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Abstract
After a brief review of the notion of dia-
grammatic inference, we show in which 
sense VENN provides a logical frame-
work able to model some form of non-
monotonic diagrammatic inference. This 
result suggests that, just as there are clas-
sical and non-classical sentential logical 
systems, there may be classical and non-
classical diagrammatic logical systems. 
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Resumen
Luego de una breve revisión de la noción 
de inferencia diagramática, mostramos 
en qué sentido VENN provee un marco 
lógico capaz de modelar cierta forma de 
inferencia diagramática no-monotónica. 
Este resultado indica que, así como exis-
ten sistemas lógicos sentenciales clásicos 
y no-clásicos, pueden existir sistemas ló-
gicos diagramáticos clásicos y no-clásicos. 
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“Diagrammatic reasoning is the only really fertile reasoning. If logicians 

would only embrace this method, we should no longer see attempts to base 

their science on the fragile foundations of metaphysics or a psychology not 

based on logical theory; and there would soon be such an advance in logic 

that every science would feel the benefit of it” 

Peirce, 1906

Introduction 

While the representational advantages of diagrams have been widely 
recognized, their computational and logical virtues have not enjoyed 
the same recognition up until recently. Notable examples in the his-
tory of Logic and Science suggest a recognition of these representa-
tional features;1 but, despite this acknowledgement, when it comes 
to the computational and logical nature of reasoning, there is still a 
tradition that supports the claim that, while proof-based reasoning 
is essential in logic and mathematics, diagram-based reasoning, no 

1   Notable examples include the diagrams of the square of opposition, usually attrib-
uted to Apuleius (Londey and Johanson,  1987: 109), and the diagrams for syllogisms 
imputed to Ammonius Hermiae or Philoponus (Hamilton, Mansel and Veitch,  1865: 
420). Llull’s Ars Magna is exemplar in that it included a diagrammatic device used to 
explain divine nature to those unable to understand God, as if diagrammatic meth-
ods were more convincing or expressive than sentential representations (Llull, 1501). 
Thomas Murner used diagrams in his Logica Memorativa in order to teach logic (Murner, 
1509). Dutch mathematician Simon Stevin developed another remarkable diagram in 
his demonstration that the efficiency of the inclined plane is a logical consequence of 
the impossibility of perpetual motion (Stevin, 1586). And, of course, we have the case of 
Descartes who, along with other Renaissance thinkers, like Kepler (Kepler, Aiton, Dun-
can, and Field, 1997), made good use of diagrams in order to model hypotheses, such 
as the mechanics of the pineal gland (Descartes, Miller and Miller, 1984). Even Kant, to-
gether with Jäsche, seems to have developed some sort of logic diagrams in the Jäsche 
Logik (Kant and Young, 1992) in order to explain the general theory of logic.
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matter how useful (Nelsen, 1993) or elegant (Polster, 2004), is not, 
for it is not bona fide reasoning.2

Thus, for example, Lagrange remarked in the Preface to the first 
edition of his Mécanique Analytique that no figures were to be found 
in his work (Lagrange, Boissonnade and Vagliente, 1997). Leibniz 
shared a similar opinion at some point (Leibniz, Remnant and Ben-
nett, 1996: 309). Dieudonné urged a strict adherence to axiomatic 
methods with no appeal to geometric intuition, at least in formal 
proofs (Dieudonné, 1996). Tennant once suggested a diagram is only 
a heuristic to prompt certain trains of inference (Tennant, 1986). 
And today the same belief is maintained, for example, in books and 
manuals that cover proof techniques (Cf. Hammack, 2013). 

This bias against diagram-based reasoning is based upon the as-
sumption that diagrams, due to their spatial features, are naturally 
prone to fallacies, mistakes, and are not susceptible of generaliza-
tion. Nevertheless, since the works of Shin (1994), Allwein, Bar-
wise and Etchemendy (1996), a successful research program around 
heterogeneous and diagrammatic reasoning has promoted different 
studies and model theoretic schemes that help us represent and bet-
ter understand diagrammatic reasoning in logical terms (Nakatsu, 
2010), thus allowing well defined conceptions of logic diagrams and 
diagrammatic inference. Research within this program is increas-
ing (Moktefi and Shin, 2013) and our contribution follows its main 
guidelines while adding a little twist on the notion of diagrammatic 
inference.

The little twist we suggest here has to do with the nature of 
diagrammatic inference. Thus, after a brief review of the notion of 
diagrammatic inference, we show in what sense VENN provides a 
logical framework able to model some form of non-monotonic dia-
grammatic inference. This result suggests that, just as there are clas-
sical and non-classical sentential logical systems, so to speak, there 
may be classical and non-classical diagrammatic logical systems.

2   This is usually the case, despite the fact that there are several instances of logic dia-
grams developed explicitly to perform inference: Leibniz and Couturat, 1961; Lambert, 
1764; Bök, 1766; Venn, 1881; Carroll, 1887; Peirce, 1906; Karnaugh, 1954; Englebretsen, 
1992; Shin, 1994 and Pagnan, 2012.
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Logic and diagrams 

❖❖ Logical systems
Reasoning is a process that produces new information given previous 
data, by following certain norms that allow us to describe inference 
as the unit of measurement of reasoning: inference may be more or 
less (in)correct depending on the compliance or violation of such 
norms.3 Logical systems, the tools used to model and better under-
stand inference, may be defined by pairs of the form <L,B>, where 
L stands for a language, and B for a semantic base (often equivalent 
to a calculus). Usually, some syntax is used to determine, uniquely 
and recursively, the well formed expressions of the system; while 
semantics is used to provide meaning to such expressions.

❖❖ Diagrams
In order to represent knowledge, we use internal and external rep-
resentations. Internal representations convey mental images, for ex-
ample; while external representations include physical objects on 
paper, blackboards, or computer screens. External representations 
can be further divided into two kinds: sentential and diagrammatic 
(Larkin and Simon, 1987).

Sentential representations, as the name indicates, are sequences 
of sentences in a particular language. Diagrammatic representations, 
on the other hand, are sequences of diagrams that contain information 

3   The structural understanding of these norms has depended, typically but not exclu-
sively, on three equivalent approaches. The semantical, whose central concept is that 
of interpretation and defines our notions of satisfaction, model, and logical truth; the 
syntactical, whose main concept is that of deducibility and characterizes our intuitions 
of proof, demonstration, and theorem; and the abstract one, whose idea is that of a con-
sequence function. These approaches are usually sentential and they define inference 
as the proprium of logic. In particular, the classical relation of inference follows the struc-
tural norms of reflexivity, monotonicity, and cut. Consequently, a non-monotonic logic is 
non-classical in the sense that it does not comply with the monotonicity clause, usually 
because it attempts to represent defeasible inference. The typical formalisms that study 
this sort of inference are also sentential and they include circumscription (McCarthy, 
1980), inheritance networks (Pollock, 1995; Dung, 1995), default rules (Reiter, 1980), au-
toepistemic logic (Moore, 1985), preferential entailment (Shoham 1987; Kraus, Lehmann 
and Magidor, 1990), and modal non-monotonic logic (McDermott & Doyle, 1980).



247Open Insight • Volumen VIII • Nº 14 (julio-diciembre 2017)  • pp. 243-263

stored at one particular locus, including information about relations 
with the adjacent loci; and diagrams are information graphics that 
index information by location on a plane (Larkin and Simon, 1987; 
Nakatsu, 2010). In particular, logic diagrams are two-dimensional 
geometric figures with spatial relations that are isomorphic with the 
structure of logical statements (Gardner, 1958: 28). The difference 
between diagrammatic and sentential representations is that, due to 
this spatial feature, the former preserve explicitly information about 
topological relations, while the latter do not—although they may, of 
course, preserve other kinds of relations. 

This spatial feature provides some computational advantages: dia-
grams group together information avoiding large amounts of search, 
they automatically support a large number of perceptual inferences, 
and they grant the possibility of applying operational constraints (like 
free rides and overdetermined alternatives (Shimojima, 1996)) to allow 
the automation of perceptual inference (Larkin and Simon, 1987). 

❖❖ Logic with diagrams
To wrap all this up, if reasoning is a process that produces new in-
formation given previous data and information can be represented 
diagrammatically, it is not uncomfortable to suggest that diagram-
matic inference is the unit of measurement of diagrammatic reason-
ing: diagrammatic inference would be (in)correct depending on the 
compliance or violation of certain norms. Let us denote the relation 
of diagrammatic logical consequence or diagrammatic inference by 
►; this relation would define our intuitions around the informal no-
tions of visual inference or visual argument and would follow, ex hypo-
thesi, classical structural norms (reflexivity, monotonicity, and cut), 
while the operator ► would follow Shimojima’s definition of a free 
ride as a process in which some reasoner gains information with-
out following any step specifically designed to gain it, i.e., a pro-
cess that allows the reasoner to reach automatically (and sometimes 
inadvertently) a diagrammatic representation of a conclusion from 
a diagrammatic representation of premises (Shimojima, 1996: 32). 
VENN, as we will see in the next section, is a diagrammatic logical 
system of this sort.
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Syllogistic, VENN, and Non-monotonicity 

The previous account of diagrammatic inference sounds reasonable, 
in principle; but monotonicity does not seem to be a feasible prop-
erty of diagrammatic inference due to the spatial nature of diagrams, 
so to speak. In order to explain this, we will see in what sense VENN 
can be used to represent some sort of (diagrammatic) non-mono-
tonicity and, for that, we will require a syllogistic base and a well 
defined diagrammatic logical system, namely VENN. 

❖❖ Syllogistic
Syllogistic is a term logic that has its origins in Aristotle’s Prior Ana-
lytics and is the theory of inference that deals with the consequence 
relation between two categorical propositions taken as premises and 
another categorical proposition taken as a conclusion. A categorical 
proposition is a proposition composed by two terms, a quantity, and 
a quality. The subject and the predicate of a proposition are called 
terms: the term-schema S denotes the subject term of the propo-
sition and the term-schema P denotes the predicate. The quantity 
may be either universal (All) or particular (Some) and the quality 
may be either affirmative or negative. These categorical propositions 
are denoted by a label, either A (universal affirmative), E (universal 
negative), I (particular affirmative), or O (particular negative). A 
categorical syllogism, then, is a sequence of three categorical proposi-
tions ordered in such a way that two propositions are premises and 
the last one is a conclusion. Within the premises there is a term that 
appears in both premises but not in the conclusion. This particular 
term works as a link between the remaining terms and is known as 
the middle term, which we denote with the term-schema M. Accord-
ing to this term we can set up four figures that encode all the valid 
and only the valid syllogisms (Table 1).4

4  	 For sake of brevity, but without loss of generality, we omit the syllogisms that requi-
re existential presupposition. 
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Figure 1 Figure 2 Figure 3 Figure 4
Barbara

MAPSAM∴SAP

Cesare

PAMSAM∴SAP

Disamis

MIPMAS∴SIP

Calemes

PAMMES∴SEP
Celarent

MEPSAM∴SEP

Camestres

PAMSEM∴SEP

Datisi

MAPMIS∴SIP

Dimaris

PIMMAS∴SIP
Darii

MAPSIM∴SIP

Festino

PEMSIM∴SOP

Bocardo

MOPMAS∴SOP

Fresison

PEMMIS∴SOP
Ferio

MEPSIM∴SOP

Baroco

PAMSOM∴SOP

Ferison

MEPMIS∴SOP

Table 1. Valid syllogisms

  

❖❖ VENN
VENN is a sound and complete diagrammatic logical system (Shin, 
1994) that is equivalent to monadic First Order Logic (Hammer, 
1995) and thus represents syllogistic quite perspicuously. Following 
(Shin, 1994: 48), it has a well defined vocabulary, syntax, and se-
mantics. Briefly, the vocabulary is defined by the next elements: the 
closed curve, the rectangle, the shading, the X, and the line (Fig. 1).

Figure 1. Syntactic elements of VENN

The semantics of VENN depends on a homomorphism with sets 
that helps define a diagram as any finite combination of diagrammatic 
elements where a region is any enclosed area in a diagram. A basic 
region is a region enclosed by a rectangle or a closed curve. A minimal 
region is a region within which no other region is enclosed. An X-
sequence is a diagram of alternating X’s and lines with an X in each ex-
tremal position. Regions represent sets and the rectangle represents 
the domain. A shaded region represents an empty region and a region 

Figure 1. Syntactic elements of VEEN

Figure 2. Categorical propositions in VEEN

Figure 3. An example of a free ride in VEEN

Figure 4. An example of monotonicity: 
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with an X represents a non-empty region. With these definitions, a 
syntax for the categorical propositions can be elaborated (Fig. 2).

Figure 1. Syntactic elements of VEEN

Figure 2. Categorical propositions in VEEN

Figure 3. An example of a free ride in VEEN

Figure 4. An example of monotonicity: 
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Figure 2. Categorical propositions in VENN

The rules for this diagrammatic system are six (Shin, 1994: 81-
93). (I) The rule of erasure of a diagrammatic object tells us that a well 
formed diagram (wfd) D

1
 is obtained from a wfd D if D

1
 results from 

either erasing a closed curve of D, or erasing a shading of some re-
gion of D, or erasing an entire X-sequence of D. (II) The rule of 
erasure of parts of an X-sequence says that D

1
 is obtained from D if it 

results from D by the erasure of parts in some X-sequence that fall 
in shaded regions, provided that the remaining X’s are reconnected. 
(III) The rule of spreading of an X-sequence tells us that D

1
 is obtained 

from D if extra X-sequences have been added to some X-sequence of 
D. (IV) The rule of introduction of a basic region indicates that a basic 
region may be introduced by drawing either a rectangle or a closed 
curve. (V) The rule of conflicting information says that if a diagram has 
a region with both a shading and an X-sequence, then we may trans-
form the given diagram into any diagram. Finally, (VI) the rule of 
unification of diagrams says that D

1
 is obtained from two well formed 

diagrams D
2
 and D

3
 if every region of D

1
 is a counterpart region of 

either D
2
 or D

3
 and conversely. If any region of D is shaded or has an 
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X-sequence, then it has a counterpart in either D
1
 or D

2
 which is also 

shaded or has an X-sequence and conversely.5

With these rules, VENN provides an essential feature of a well 
defined diagrammatic logic: a diagrammatic method of decision (in 
this case, for syllogistic) that consists in drawing down the diagrams 
for the premises and then checking (by mere observation) whether 
it is possible to “read off ” the conclusion from the drawing of the 
premises; in case it does, the syllogism is valid (i.e., there is a free 
ride); otherwise it is invalid (i.e., there is an overdetermined alter-
native). 

❖❖ Example 1
Consider a syllogism of the form MAPSIM∴SIP. According to 
these rules, we begin with an introduction of areas (step 1) and then 
a unification is applied (step 2). After that, we apply an erasure of 
an X-sequence (step 3) and then a spreading of an X-sequence (step 
4). Finally, by the erasure of a closed curve rule, we obtain a final 
diagram (step 5). And since the conclusion got drawn by drawing 
down the premises, the diagrammatic inference is valid. This is a fair 
example of a free ride: MAPSIM►SIP (Fig. 3).

Figure 3. An example of a free ride in VENN

5   These rules may be summarized into categories of erasure, addition, and unification 
(Nakatsu, 2010: 133). Erasure: i) of a shading in a region; ii) of a whole X-sequence; iii) of 
a part of an X-sequence in a shaded region; iv) of a circle (a partial shading in a region 
or an X-sequence with more than one X in a region). Addition: i) by lengthening an X-
sequence; ii) of a circle; iii) by partial overlapping; iv) by inclusion of all compartments 
of region in an X-sequence. Unification: i) by copying circles to the unified diagram; ii) 
by copying corresponding shading to the unified diagrams; by iii) copying correspon-
ding X-sequences to the unified diagrams.

Figure 1. Syntactic elements of VEEN

Figure 2. Categorical propositions in VEEN

Figure 3. An example of a free ride in VEEN

Figure 4. An example of monotonicity: 
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❖❖ Non-monotonicity with VENN
After this brief review of diagrammatic inference, we now suggest in 
what sense VENN provides a logical framework able to model some 
form of non-monotonicity. To explain why VENN is suitable for this 
task, consider that non-monotonic reasoning can be characterized 
by the following “equation” (Bochman, 2011): 

Non-monotonic reasoning=Logic+Non-monotonic semantics. 

We could say, in similar lines, that: 

Non-monotonic diagrammatic reasoning=Logic+Diagrams+Non-
monotonic semantics, 

or for our purposes, that: 
 
Non-monotonic diagrammatic reasoning=Syllogistic base+VENN+ 
Non-monotonic semantics. 

To explain in what sense we can talk about some sort of non-
monotonic semantics, let us begin with an example in classical First 
Order Logic. 

❖❖ Example 2
Consider a Barbara syllogism, i.e., a reasoning of the form MAPSAM\SAP:

1. ∀x(Mx→Px)	 MAP

2. ∀x(Sx→Mx)	 SAM

∴ ∀x(Sx→Px)	 SAP

If we add the sentence SOP (which contains contradictory in-
formation w.r.t. the conclusion), we can see that SAP is still a logi-
cal consequence from MAPSAMSOP: 
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1. ∀x(Mx→Px)	 MAP

2. ∀x(Sx→Mx)	 SAM

3. ∃x(Sx∧¬Px)	 SOP

∴ ∀x(Sx→Px)	 SAP

But moreover, even if we follow the account of Venn given in 
(Shin, 1994: 81-93) we can see that, according to rule V, since from 
conflicting information we can obtain any diagram, the diagram that 
represents SAP is still a logical consequence from the diagram given 
in MAPSAMSOP, for such rule is the diagrammatic version of the 
“ex contradictio sequitur quodlibet” rule, which not only implies some 
sort of monotonicity (Fig. 4), but also some sort of irrelevance (Fig. 
5) within VENN.

Figure 4. An example of monotonicity: 

MAPSAM∪SOP►SAP

Figure 5. An example of irrelevance: 

MAPSAM∪SOP►SIP

Figure 1. Syntactic elements of VEEN

Figure 2. Categorical propositions in VEEN

Figure 3. An example of a free ride in VEEN

Figure 4. An example of monotonicity: 
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However, Venn diagrams are diagrams, and so, they have spa-
tial features and this fact has consequences. Indeed, as Barwise and 
Etchemendy argue: “Diagrams are physical situations. They must 
be, since we can see them. As such they obey their own set of con-
straints.” (Allwein et al, 1996: 23). A physical situation is a situa-
tion in the world, in this case, it is a portion of paper (i.e. a space) 
on which we draw the diagrams (Shimojima, 1996: 38). Hence, the 
constraints Barwise and Etchemendy talk about must be spatial con-
straints that should (dis)allow certain rules to work; in particular, 
the rule of conflicting information should be unlikely to work prop-
erly because contradictory diagrams cannot exist in the exact same 
portion of paper (i.e. the same space), because they are opposite 
physical situations.

To further clarify this last point, we can refer to (Shin, 1994: 
167-168). Shin argues, rather convincingly, that contradictory in-
formation can be represented more perceptually in diagrammatic 
representations than in linguistic representations, since in diagram-
matic representations this kind of information becomes visually 
noticeable, for conflicting spatial arrangements are evident. And to 
illustrate this, Shin advances a couple of examples that we are going 
to reproduce. For the first one, consider the following statements:

1. Susan is to the left of Tom.
2. Tom is to the left of Mary.
3. Mary is to the left of Susan.

In First Order Logic, these statements can be represented via the 
conjunction Lst∧Ltm∧Lms. This conjunction can be shown to be a 
contradiction by noticing that the relation “being left of ” (denoted 
by Lxy) is transitive and asymmetric. But, Shin continues, although 
such contradiction is not obviously revealed by the notation, it is 
perceptually evident with the next diagram: 

Susan Tom Mary Susan
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The diagram above violates the following spatial constraint of 
this representation: that no diagram occupies more than one place 
simultaneously. 

As for the second example, consider the case of a timetable, 
which is a diagrammatic representation of a schedule. Suppose fur-
ther that we want to add a new appointment to the timetable. If this 
new appointment conflicts with any existing appointments, this con-
flict will be revealed clearly, since the new addition would violate 
the following spatial constraint of this representation: that no space 
can be occupied by more than one diagram. 

What these particular examples show is that, when it comes to 
opposite physical situations, we must consider two physical con-
straints: that no diagrammatic object occupies more than one place 
simultaneously and that no space can be occupied by more than one 
diagrammatic object. And these remarks give us plausible reasons 
to warrant some sort of non-monotonicity within VENN, provided 
we interpret diagrams as legitimate inference bearers with physical 
properties and not just as mediums that represent information. So, 
let us consider a couple of definitions that presuppose the general 
notion of a physical situation. 

❖❖ Definition 1
(Diagrammatic configuration) Let ∆={δ1,...,δn} be a sequence 
of diagrams for categorical propositions in VENN, let StP be any  
categorical proposition in syllogistic with label t∈{A, E, I, 
O}, and let h be a homomorphism from VENN to syllogistic s.t. 
h(δ)=StP. A diagrammatic configuration is Cfg(δ)={h(δ)|δ∈∆}. 

❖❖ Definition 2
(Free ride) Let δ be a diagram for a categorical proposition in VENN 
and let ∆ be a finite sequence of diagrams for categorical proposi-
tions in VENN, we say δ is a free ride from ∆, ∆►δ, if and only if 
δ=∆ or there is a sequence of applications of rules I–VI that allows 
us to transform ∆ into δ. 
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Now, provided we interpret diagrams as physical situations, we 
can account for the next statement:

❖❖ Proposition 1
(Non-monotonicity) VENN allows non-monotonicity.
Proof. We prove this by producing a counter-example. Suppose 
VENN allows monotonic inference and let Cfg(∆)=MAPSAM. 
From such configuration we can get a free ride to the configuration 
Cfg(δ)=SAP, i.e., ∆►δ, as in Figure 6.

Figure 6. MAPSAM►SAP

Now, as we did in Example 2, pick a contradictory diagram 
δ’=¬δ, i.e. pick Cfg(δ’)=SOP, and add it by an addition rule 
(namely, introduction of a region). Since δ and δ’ are opposite physical 
situations, they cannot occupy more than one place simultaneously 
and no space can be occupied by the two of them, so the addition 
of δ’ implies the erasure of δ by an erasure rule (namely, erasure of a 
diagrammatic object). This avoids any application of rule V, i.e., it disal-
lows any combination of contradictory diagrams, and hence, while 
∆►δ holds, ∆∪{δ’}►δ does not (Fig. 7).6

6  	 At this point, maybe an anecdote is in order: we came to appreciate this situation af-
ter teaching syllogistic with VENN. Usually students would enter in conflict while draw-
ing combinations of diagrams for universal and particular statements. They normally 
would think that, once we draw an X sequence in a region, that region cannot be occu-
pied by a shadow, or vice versa. But later they find out that, sometimes, a new shadow 
is needed where there is an X (or vice versa), and then they have to erase the X (or the 
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Figure 7. MAPSAM∪SOP►SAP does not hold.

We can extract two consequences from this result. First, that 
VENN provides a logical framework able to model some form of 
non-monotonic diagrammatic inference, provided diagrams are 
rightly interpreted as physical situations.7 And second, that we can 
advance the idea of non-monotonic diagrammatic systems that we 
could approximate, for example, with rules à la Nute (2003), by 
letting > denote a preference relation over diagrams, ► denote a 
strong free ride, ⊳ a weak free ride, and ◄ and ⊲ represent not being 
strong and weak overdetermined alternatives:

shadow), in order to incorporate a new diagrammatic object; but in doing so, students 
often assume that an X and a shadow cannot occupy the same place simultaneously 
and that such space can only be occupied by one of those diagrammatic objects. What 
this anecdote indicates, in our opinion, is that the physical constraints of VENN are quite 
natural when doing diagrammatic reasoning and that they modify the a priori under-
standing of diagrammatic inference.

7  	 It seems that we can restrict the notion of a free ride solely by disallowing the com-
bination of contradictory diagrams and blocking the inference while having premises 
not combined. This ingenious solution, pointed out to us by one of the referees, allows 
us to represent contradictory diagrams while disallowing monotonicity. We believe this 
solution, and the one we have advanced here, are equivalent in so far as both disallow 
the rule of conflicting information; however, we think that appealing to the fact that 
diagrams are physical situations provides an explanatory advantage in that it gives us 
a plausible explanation of the rejection of such rule.
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1) ∆►δ iff

	 a) ∆=δ or 

	 b) ∃∆’⊆∆: ∆’►δ

3) ∆◄δ iff 

	 a) ∆≠δ and 

	 b) ∀∆’⊆∆: ∆’◄δ

2) ∆⊳δ iff 

	 a) ∆►δ or 

	 b) ∆◄¬δ and

		  i) ∃∆’⊆∆: ∆’⊳δ or

		  ii) ∆>¬δ

4) ∆⊲δ iff 

	 a) ∆◄δ and 

	 b) ∆►¬δ or 

		  a) ∀∆’⊆∆: ∆’⊲δ and

		  a) δ≯¬δ

Rule 1 (3) would describe classical diagrammatic systems by defin-
ing classic or strong notions of free ride (δ is a strong free ride from ∆ 
if and only if δ is the configuration given by ∆ or if there is a subset 
∆’ of ∆ from which δ is a strong free ride); while rule 2 (4) would 
describe non-classical diagrammatic systems by defining a non-clas-
sic or weak notion of free ride (δ is a weak free ride from ∆ if and only 
if δ is a strong free ride from ∆ or if ¬δ is not a strong overdeter-
mined alternative and either for some subset ∆’ of ∆, δ is a weak 
free ride or δ is preferred over ¬δ). 

With these rules, we can state some relations between classical 
and non-classical diagrammatic notions of inference. For example, 
one plausible but trivial relation would establish that diagrams ob-
tained by way of strong free rides must also be obtained by way of 
weak free rides (but not inversely); and conversely, that weak over-
determined alternatives must imply not having strong overdeter-
mined alternatives (but not inversely):

❖❖ Proposition 2
(Subalterns) If ∆►δ, then ∆⊳δ; and if ∆⊲δ, then ∆◄δ.

Another relation would say that strong free rides must not con-
flict with strong overdetermined alternatives, and the same for weak 
free rides and weak overdetermined alternatives:
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❖❖ Proposition 3
(Contradictories) There is no δ s.t. ∆►δ and ∆◄δ, and there is no 
δ s.t. ∆⊳δ and ∆⊲δ.

Finally, a last couple of relations would establish that strong free 
rides and weak overdetermined alternatives must not conflict, but 
weak free rides and strong overdetermined alternatives may coexist: 

❖❖ Proposition 4
(Contraries) There is no δ s.t. ∆►δ and ∆⊲δ. 

❖❖ Proposition 5
(Subcontraries) For all δ, ∆⊳δ or ∆◄δ.  

These propositions show the coherence of these diagrammatic 
relations. We can represent this coherence diagrammatically with 
the next square of opposition:

Figure 8. A square of opposition

In order to illustrate these relations between classical and non-
classical diagrammatic systems, consider a couple of examples. 

❖❖ Example 3
Consider an instance of a valid syllogism, say a Barbara syllogism. In 
Figure 9 we can see Cfg(SAP)≠Cfg(MAPSAM), but for some sub-
set of Cfg(MAPSAM), Cfg(SAP) is indeed a strong free ride, which 
means that Cfg(SAP) is also a weak free ride (Proposition 2), but it 
is not a strong nor a weak overdetermined alternative (Propositions 
3 and 4).

∆►δ

∆⊳δ ∆◄δ

contraries

contradictories subalternssubalterns

subcontraries

∆⊲δ
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Figure 9. MAPSAM►SAP and MAPSAM⊳SAP

❖❖ Example 4
As a second case, consider an invalid syllogistic form, say 
MIPSIM∴SIP. Since this syllogistic form is invalid, it should 
be the case that its diagrammatic representation must be an over-
determined alternative. Indeed, in Figure 10 we can see that 
Cfg(SIP)≠Cfg(MIPSIM) and that for all the remaining combina-
tions or subsets of diagrams, Cfg(SIP) is not a strong free ride, 
which means that Cfg(SIP) is not a strong free ride but a strong 
overdetermined alternative (Proposition 3), from which it follows 
that Cfg(SIP) is admissible if regarded as a weak free ride (Proposi-
tion 5), but both, ► and ⊳, do not hold (Proposition 4).

Figure 10. MIPSIM◄SIP or MIPSIM⊲SIP

❖❖ Conclusions
After a brief revision of the notion of diagrammatic reasoning, we 
argued that VENN provides a logical framework able to model some 
form of non-monotonic diagrammatic reasoning, provided diagrams 
are interpreted as physical situations. Then we suggested the idea 
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that we could characterize classical and non-classical (i.e., non-
monotonic) systems of diagrammatic reasoning and we pointed out 
some possible bridges between such systems.

We think these results, although purely theoretical so far, are 
interesting in and of themselves, but they are also enthralling be-
cause they open the possibility of treating diagrammatic systems not 
only in logical but in extra logical terms, thus allowing deeper philo-
sophical research: Is there something as a paraconsistent diagram? 
Is there an intuitionistic or relevantist interpretation of diagrams? 
Can diagrams allow (not just represent) inferences beyond deduc-
tive paradigms? We think answers to these questions deserve further 
research.

❖❖ Acknowledgements
We would like to thank the anonymous reviewers for their preci-
se corrections and useful comments. Financial support given by 
UPAEP Grant 30108-1008.

References 

Allwein, G., J. Barwise. (1996). Logical Reasoning with Diagrams, Oxford University 
Press: New York. 

Bochman, A. (2011). “Logic in nonmonotonic reasoning” En Non-monotonic reasoning. 
Essays celebrating its 30th anniversary. College Publications. 

Lagrange, J.L., A.C. Boissonnade, V.N. Vagliente. (1997). Analytical Mechanics. Kluwer 
Academic: Dordrecht.

Bök, A.F. (1766). Sammlung der Schriften, welche den logischen Calcul Herrn Ploucquets 
betreffen. Frankfurt U.A.

Descartes, R., V.R. Miller, R.P. Miller. (1983). Principles of Philosophy. Reidel: Dor-
drecht. 
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