A Tableaux Method for Modal Term Logic
Abstract
In this contribution we offer a tableaux method for Englebretsen’s modal term functor logic. The result is a tableaux method for propositional logic, basic syllogistic, relational syllogistic, and modal syllogistic.References
Babcock, H. (1970). Intentional Logic: A Logic Based on Philosophical Realism. Hamden, Conneticut: Archon Books.
Becker, A. (1933). Die aristotelische Theorie der Möglichkeitsschlüsse. Berlin: Junker und Dünnhaupt.
Bocheński, J. M. (1956). Formale Logik. München: Karl Alber.
Carnap, R. (1930). “Die alte und die neue Logik”. En Erkenntnis, n. 1; pp. 12-26.
Castro-Manzano, J.-M. (2018). “A Tableaux Method for Term Logic”. En Logic/Languages, Algorithms and New Methods of Reasoning (LANMR); pp. 1-14.
(2019). “Sobre un método de árboles para la lógica de términos numérica”. En Andamios. Revista de Investigación Social, 16, n. 41; pp. 103-125.
(2020a). “Distribution Tableaux, Distribution Models”. En Axioms, 9, 41. En https://www.mdpi.com/2075-1680/9/2/41/htm (consultado el 27 de agosto de 2020).
(2020b). “¿Es la lógica de términos una lógica libre?”. En Stoa, 11, n. 21; pp. 98-109.
(2020c). “Silogística intermedia, términos y árboles”. En Tópicos. Revista de Filosofia, 58; pp. 209-237.
Castro-Manzano, J.-M. y Reyes-Cárdenas, P.-O. (2018). “Term Functor Logic Tableaux”. En South American Journal of Logic, 4, n. 1;pp. 1-22.
Correia, M. (2017). “La lógica aristotélica y sus perspectivas”. En Pensamiento, 73, n. 275; pp. 5-19.
D’Agostino, M.; Gabbay, D. M.; Hähnle, R. y Posegga, J. (1999). Handbook of Tableau Methods. Netherlands: Springer.
Englebretsen, G. (1988). “Preliminary Notes on a New Modal Syllogistic”. En Notre Dame J. Formal Logic, 29, n. 3; pp. 381-395.
(1996). Something to Reckon with: The Logic of Terms. Ottawa: University of Ottawa Press.
Englebretsen, G. y Sayward, Ch. (2011). Philosophical Logic: An Introduction to Advanced Topics. London: Continuum Bloomsbury Academic.
Geach, P. (1962). Reference and Generality: An Examination of Some Medieval and Modern Theories. Ithaca, N.Y.: Cornell University Press.
(1980). Logic Matters. Berkeley: University of California Press.
Hintikka, J. (1973). Time & Necessity: Studies in Aristotle’s Theory of Modality. Oxford: Clarendon Press.
Kneale, W. y Kneale, M. (1962). The Development of Logic. Oxford: Clarendon Press.
Łukasiewicz, J. (1957). Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic. Oxford: Clarendon Press.
Malink, M. (2013). Aristotle’s Modal Syllogistic. Cambridge, MA: Harvard University Press.
McCall, S. (1963). Aristotle’s Modal Syllogisms. Amsterdam: North-Holland.
Patzig, G. (1968). Aristotle’s Theory of the Syllogism. Dordrecht: Reidel.
Priest, G. (2008). An Introduction to Non-Classical Logic: From If to Is. Cambridge: Cambridge University Press.
Rini, A. (1998). “Is there a modal syllogistic?”. En Notre Dame J. Formal Logic, 39, n. 4; pp. 554-572.
Simons, P. (2020). “Term Logic”. En Axioms, 9, n. 18. En https://www.mdpi.com/2075-1680/9/1/18 (consultado el 27 de agosto de 2020).
Sommers, F. (1982). The Logic of Natural Language. Oxford: Clarendon.
Sommers, F. y Englebretsen, G. (2000). An Invitation to Formal Reasoning: The Logic of Terms. Aldershot: Ashgate Pub Ltd.
Striker, G. (1994). “Modal vs. Assertoric Syllogistic”. En Ancient Philosophy, 14; pp. 39-51.
Thom, P. (1996). The Logic of Essentialism. An Interpretation of Aristotle’s Modal Syllogistic.Dordrecht: Kluwer.
Thompson, B. (1986). “Syllogisms with statistical quantifiers”. En Notre Dame J. Formal Logic, 27, n. 1; pp. 93-103.